Abstract

BackgroundThis study investigated the effects of pentoxifylline (PTX) combined with resuscitation fluids on microcirculatory dysfunctions in a two-hit model of shock and sepsis. Materials and methodsMale Wistar rats (250 g) were submitted to hemorrhagic shock and reperfusion followed by sepsis induced by cecal ligation and puncture. For the initial treatment of shock, rats were randomly divided into: sham, no injury, no treatment; hypertonic saline solution (HS) (7.5%, 4 mL/kg); lactated Ringer's solution (LR, 3 × shed blood volume); HS + PTX (4 mL/Kg + 25 mg/kg PTX); and LR + PTX (3 × shed blood volume + 25 mg/kg PTX). After 48 h of being exposed to the double injury, leukocyte–endothelial interactions were assessed by intravital microscopy of the mesentery. Endothelial expression of P-selectin and intercellular adhesion molecule-1 (ICAM-1) was evaluated by immunohistochemistry, as well as lung neutrophil infiltration by histology. ResultsLactated Ringer's solution induced marked increases (P < 0.001) in the number of rolling leukocytes per 10 min (two-fold), adherent leukocytes per 100 μm venule length (six-fold), migrated leukocytes per 5000 μm2 (eight-fold), P-selectin and ICAM-1 expression (four-fold), and lung neutrophil infiltration (three-fold) compared with sham. In contrast, PTX attenuated leukocyte–endothelial interactions, P-selectin and ICAM-1 expression at the mesentery when associated with either LR (P < 0.001) or HS (P < 0.05). Neutrophil migration into the lungs was similarly reduced by PTX (P < 0.05). ConclusionsData presented showed thatpentoxifylline attenuates microcirculatory disturbances at the mesenteric bed with significant minimization of lung inflammation after a double-injury model of hemorrhagicshock and reperfusion followed by sepsis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.