Abstract
Pentobarbital (PB) and ketamine (Ket) influence the concentration of neurotransmitters in the brain. PB has been reported to decrease the extracellular nitric oxide (NO) concentration through a decrease in acetylcholine (ACh) release, while Ket has been shown to increase the NO concentration via an increase in ACh release. Here, we investigated effects of PB and Ket on NO release and the relationship between NO and ACh in the rat striatum by in vivo microdialysis experiments. Male Sprague-Dawley rats were used. A microdialysis probe was inserted into the right striatum and perfused with modified Ringer's solution. Samples were collected every 15 min and injected into an HPLC system. The rats were freely moving, and PB and Ket were administered intraperitoneally. Neostigmine (1 and 10 µM) and mecamylamine (100 µM) were added to the perfusate. Calcium and magnesium concentrations were modified for each anesthetic to influence ACh release. PB decreased NO products (NOx) while Ket increased them. While perfusion with neostigmine showed no effect on baseline NOx concentrations, it diminished the PB-induced NOx reduction at low concentrations and abolished it at high concentrations. Magnesium-free perfusion had no effect on baseline NOx concentrations, whereas perfusion at a low magnesium concentration antagonized the PB-induced NOx reduction. Mecamylamine and calcium-free perfusion had no effect on baseline NOx concentrations and Ket-induced NOx increases. PB may decrease NO release through reduction in ACh release, whereas Ket may increase NO release independent of ACh regulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.