Abstract
Let Γ be a graph and let G be a group of automorphisms of Γ. The graph Γ is called G-normal if G is normal in the automorphism group of Γ. Let T be a finite non-abelian simple group and let G=Tl with l≥1. In this paper we prove that if every connected pentavalent symmetric T-vertex-transitive graph is T-normal, then every connected pentavalent symmetric G-vertex-transitive graph is G-normal. This result, among others, implies that every connected pentavalent symmetric G-vertex-transitive graph is G-normal except T is one of 57 simple groups. Furthermore, every connected pentavalent symmetric G-regular graph is G-normal except T is one of 20 simple groups, and every connected pentavalent G-symmetric graph is G-normal except T is one of 17 simple groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.