Abstract
Noble metal nanoparticles, particularly gold and silver nanoparticles, have garnered significant attention due to their ability to manipulate light at the nanoscale through their localized surface plasmon resonance (LSPR). While their LSPRs below 1100 nm were extensively exploited in a wide range of applications, their potential in the near-infrared (NIR) region, crucial for optical communication and sensing, remains relatively underexplored. One primary reason is likely the limited strategies available to obtain highly stable plasmonic nanoparticles with tailored optical properties in the NIR region. Herein, we synthesized AuAg nanorattles (NRTs) with tailored and narrow plasmonic responses ranging from 1000 to 3000 nm. Additionally, we performed comprehensive characterization, employing advanced electron microscopy and various spectroscopic techniques, coupled with finite difference time domain (FDTD) simulations, to elucidate their optical properties. Notably, we unveiled the main external and internal LSPR modes by combining electron energy-loss spectroscopy (EELS) with surface-enhanced Raman scattering (SERS). Furthermore, we demonstrated through surface-enhanced infrared absorption spectroscopy (SEIRA) that the NRTs can significantly enhance the infrared signals of a model molecule. This study not only reports the synthesis of plasmonic NRTs with tunable LSPRs over the entire NIR range but also demonstrates their potential for NIR sensing and optical communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemistry of materials : a publication of the American Chemical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.