Abstract

Two-dimensional (2D) phosphorus-rich phosphides generally preserve the excellent electronic properties of phosphorene, making them promising photocatalysts for water splitting. Despite tremendous efforts in the search for potential photocatalysts in 2D phosphides, few known 2D phosphides fully meet the requirements for photocatalytic water splitting. Herein, we systemically investigate a set of penta-MP5 (M = B, Al, Ga, and In) monolayers by first-principles calculations and identify them as potential photocatalysts for water splitting. These penta-MP5 monolayers are found to feature favorable bandgaps of about 2.70 eV with appropriate band edge positions, a high carrier mobility of 1 × 104 cm-2 V-1 s-1, an excellent optical absorption coefficient (OAC) of 1 × 105 cm-1, and a good solar-to-hydrogen (STH) efficiency of 8%. Meanwhile, free energy calculations indicate that these penta-MP5 monolayers present both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) photocatalytic activities under light conditions. All these excellent properties demonstrate that penta-MP5 monolayers are suitable candidates as photocatalysts for promising applications in overall water splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call