Abstract
The ability of [( η 5-C 5Me 5)M III(L)Cl] + complexes (M = Rh and Ir. L = 2,2′-bipyridine and 1, 10-phenanthroline) to act as electrocatalysts for the hydrogenation of unsaturated organic substrates has been examined in homogeneous acetonitrile solution, using formic acid as a proton source, as well as in aqueous electrolytes with electrodes modified by oxidative electropolymerization of pyrrole-substituted Rh(III) and Ir(III) complexes. The hydrogenation process involves the formation of an electrogenerated hydrido complex, followed by the insertion of the substrate in the metal-hydride bond. It appears that rhodium complexes are better catalysts than the iridium ones, and that their immobilization onto an electrode surface decreases their catalytic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.