Abstract

The search for sp 3-hybridized carbon allotropes other than diamond has attracted extensive interest because of their fascinating properties. In this paper, an orthorhombic carbon phase in sp 3 bonding, named pentaheptite diamond, by combining the particle swarm optimization method with first-principles calculations has been predicted. The phonon spectra, total energy and elastic constants calculations of the pentaheptite diamond confirm its dynamical, thermal and mechanical stability at zero pressure, respectively. It possesses a high bulk modulus of 385 GPa and Vickers hardness of 72.6 GPa, comparable to diamond. Electronic band structure calculations show that the pentaheptite diamond has a direct band gap of 4.18 eV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.