Abstract
AbstractLet G be a graph of order n ≥ 5k + 2, where k is a positive integer. Suppose that the minimum degree of G is at least ⌈(n + k)/2⌉. We show that G contains k pentagons and a path such that they are vertex‐disjoint and cover all the vertices of G. Moreover, if n ≥ 5k + 7, then G contains k + 1 vertex‐disjoint cycles covering all the vertices of G such that k of them are pentagons. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 194–208, 2007
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.