Abstract

In 2022, the Pentagon Force Protection Agency found threat agnostic detection of novel bioaerosol threats to be "not feasible for daily operations" due to the cost of reagents used for metagenomics, cost of sequencing instruments, and cost of labor for subject matter experts to analyze bioinformatics. Similar operational difficulties might extend to many of the 280,000 buildings (totaling 2.3 billion square feet) at 5,000 secure US Department of Defense military sites, 250 Navy ships, as well as many civilian buildings. These economic barriers can still be addressed in a threat agnostic manner by dynamically pooling samples from dry filter units, called spike-triggered virtualization, whereby pooling and sequencing depth are automatically modulated based on novel biothreats in the sequencing output. By running at a high average pooling factor, the daily and annual cost per dry filter unit can be reduced by 10 to 100 times depending on the chosen trigger thresholds. Artificial intelligence can further enhance the sensitivity of spike-triggered virtualization. The risk of infection during the 12- to 24-hour window between a bioaerosol incident and its detection remains, but in some cases it can be reduced by 80% or more with high-speed indoor air cleaning exceeding 12 air changes per hour, which is similar to the rate of air cleaning in passenger airplanes in flight. That level of air changes per hour or higher is likely to be cost-prohibitive using central heating ventilation and air conditioning systems, but it can be achieved economically by using portable air filtration in rooms with typical ceiling heights (less than 10 feet) for a cost of approximately $0.50 to $1 per square foot for do-it-yourself units and $2 to $5 per square foot for high-efficiency particulate air filters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call