Abstract

Supported Pd catalysts are active in catalyzing the highly exothermic methane combustion reaction but tend to be deactivated owing to local hyperthermal environments. Herein we report an effective approach to stabilize Pd/SiO2 catalysts with porous Al2 O3 overlayers coated by atomic layer deposition (ALD). 27 Al magic angle spinning NMR analysis showed that Al2 O3 overlayers on Pd particles coated by the ALD method are rich in pentacoordinated Al3+ sites capable of strongly interacting with adjacent surface PdOx phases on supported Pd particles. Consequently, Al2 O3 -decorated Pd/SiO2 catalysts exhibit active and stable PdOx and Pd-PdOx structures to efficiently catalyze methane combustion between 200 and 850 °C. These results reveal the unique structural characteristics of Al2 O3 overlayers on metal surfaces coated by the ALD method and provide a practical strategy to explore stable and efficient supported Pd catalysts for methane combustion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.