Abstract

The reductive dechlorination of chlorophenols was studied in three fluidized-bed reactors (FBRs) with respect to enrichment, pathways, complete dechlorination, and overall performance. The methanogenic consortia, developed by previous researchers in our laboratory, have been further enriched by reducing the ratio of substrate to pentachlorophenol (PCP) and increasing the PCP loading. The performance of the consortia was improved, and complete dechlorination at high PCP loading rates was observed, reaching a PCP loading of 1227 µmol/L d with 99% chlorophenol removal. The dechlorination rates in the reactors for chlorophenol (CP) congeners were obtained and were used to evaluate the performance of the three consortia and to quantitatively estimate the fates of these chlorophenols in the reactors. The consortium with the best performance was further investigated in bottle tests by treatment with heat and metabolic inhibitors to examine chlorophenol degradation and to characterize the CP degraders. The degradation of all monochlorophenols was completely inhibited after heat treatment, but the degradation of all other tested chlorophenols was hardly affected by heat treatment, indicating that spore-forming bacteria likely were involved in dechlorination. Addition of sulfate negatively affected CP degradation, but addition of molybdate reduced the effect of sulfate. Tests with 2-bromoethanesulfonic acid and vancomycin indicated that bacteria were responsible for chlorophenol degradation in the consortium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call