Abstract

It is the first report in which a novel psychrotrophic Pseudomonas putida SKG-1 strain was evaluated for simultaneous bioremediation of pentachlorophenol and Cr(6+) under various cultural and nutritional conditions. Pentachlorophenol (PCP) dechlorination products, bacterial structure, and functional groups were characterized by gas chromatography and mass spectrometry (GC-MS), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDS), and Fourier-transform infrared (FTIR) techniques. The strain was extremely tolerant to excessively higher individual concentration of PCP (1,400 mg l(-1)) and Cr(6+) (4,300 mg l(-1)). Increasing concentration of PCP and Cr(6+) exerted inhibitory effect on bacterial growth and toxicants' removal. The strain exhibited growth, and concomitantly remediated both the pollutants simultaneously over a broad pH (7.0-9.0) and temperature (28-32 °C) range; maximum growth, PCP dechlorination (87.5%), and Cr(6+) removal (80.0%) occurred at optimum pH 8.0 and 30 °C (from initial PCP 100 mg l(-1) and Cr(6+) 500 mg l(-1)) under shaking (150 rpm) within 72 h incubation. Optimization of agitation (125 rpm) and aeration (0.4 vvm) in bioreactor further enhanced PCP dechlorination by ~10% and Cr(6+) removal by 2%. A direct correlation existed between growth and bioremediation of both the toxicants. Among other heavy metals, mercury exerted maximum and cobalt minimum inhibitory effect on PCP dechlorination and Cr(6+) removal. Chromate reductase activity was mainly associated with the supernatant and cytosolic fraction of bacterial cells. GC-MS analysis revealed the formation of tetrachloro-p-hydroquinone, 2,4,6-trichlorophenol, and 2,6-dichlorophenol as PCP dechlorination products. FTIR spectrometry indicated likely involvement of carbonyl and amide groups in Cr(3+) adsorption, and SEM-EDS showed the presence of chromium on P. putida surface. Thus, our promising isolate can be ecofriendly employed for biotreatment of various industrial wastes contaminated with high PCP and Cr(6+) concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call