Abstract

The relationship between the covalent binding, uptake, and toxicity produced by pentachlorobutadienyl-L-cysteine (PCBC) was examined in rabbit renal proximal tubules (RPT), renal basolateral membrane vesicles, and isolated renal cortical mitochondria. Renal proximal tubules rapidly metabolized PCBC to a reactive intermediate that bound to tubular protein. Approximately 70-90% of PCBC found in the cell at any given time was bound to protein. PCBC initially uncoupled oxidative phosphorylation, followed by a 45% reduction of state 3 respiration and a 90% decrease in cellular adenosine triphosphate (ATP) levels. These events preceded cell death. Isolated mitochondria also metabolized PCBC to a reactive intermediate that bound to mitochondrial protein and initiated mitochondrial toxicity. These results show that PCBC-induced mitochondrial dysfunction occurred as a result of mitochondrial bioactivation and that the mitochondrion is the critical subcellular target in PCBC toxicity. Aminooxyacetic acid (AOAA), an inhibitor of cysteine conjugate beta-lyase, reduced the covalent binding of PCBC-equivalents to tubular protein by approximately 90% and decreased but did not prevent the toxic effects produced by PCBC on RPT respiration and cellular ATP levels. AOAA delayed but had no effect on the overall extent of cell death produced by PCBC. The protective effect of AOAA was independent of any effects on PCBC uptake. These results show that AOAA decreased but did not prevent the metabolism of PCBC by cysteine conjugate beta-lyase. The partial inhibition of PCBC metabolism, and hence, PCBC-induced cell death by AOAA, may be related to limited concentrations of AOAA within the tubule cell or mitochondria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call