Abstract
This paper presents a novel design for and an experimental study of a dual-polarized quad-port MIMO antenna. The design achieves resonance at five distinct frequency bands with reduced mutual coupling. The design includes a single annular ring slot, four truncated rectangular corners, and a truncated aperture to improve resonance behavior. The design is then extended to a four-port MIMO antenna by including a ground-plane slit to enhance isolation between antenna elements at the center resonance band. The antenna achieves resonances at 5 distinct bands, ranging from 1.5 to 8.4 GHz, with significant mutual coupling reductions. The resonances of the quad-port pentaband MIMO antenna are achieved at 1.55 GHz (1.5–1.65 GHz), 2.5 GHz (2.4–2.7 GHz), 5.2 GHz (5–5.85), 7.3 GHz (7.1–7.4), and 8.15 GHz (7.9–8.4), with respective mutual coupling reductions of 27 dB, 37 dB, 21 dB, 29 dB, and 21 dB. Additionally, the 3 dB axial ratio bandwidth (ARBW) is observed at 6.5% (1.5–1.6 GHz) and 15% (2.4–2.7 GHz) in 2 distinct bands, and the envelope correlation coefficient and diversity gain are calculated within the specified band range. Experimental measurements of the prototype for the quad-port antenna are conducted, with excellent agreement found between the results and the simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.