Abstract

Prostate carcinoma is the most frequently diagnosed malignancy and the second leading cause of cancer-related death of men in the United States. Epidermal growth factor (EGF) generated from bone tissue contributes to prostate cancer metastasis through stimulating matrix metalloproteinase (MMP) secretions from prostate cancer cells. In this study, in vitro invasion assay was performed by incubating penta-O-galloyl-beta-D-glucose (5GG) at various concentrations with 2 x 10(4) PC-3 cells for 48 h. The anti-invasive and cytotoxic effects of 5GG were found and evaluated on the human androgen-independent prostate cancer PC-3 cell line by MTT assays and Western blot analyses. 5GG inhibited the EGF-induced cell invasiveness and MMP-9 expression in a dose- and time-dependent manner by reducing the MMP-9 transcriptional activity. To explore the mechanisms for the 5GG-mediated regulation of MMP-9, we further examined the effects of 5GG on transcription factors, including NF-kappaB, AP-1, and mitogen-activated protein kinase (MAPK) activities. The results showed that 5GG suppressed the EGF-induced NF-kappaB nuclear translocation and also abrogated the EGF-induced activation of c-jun N-terminal kinase (JNK), an upstream modulator of NF-kappaB. Moreover, we showed that 5GG reduced EGFR expression through the proteasome pathway. These results suggest that 5GG may exert at least part of its anti-invasive effect in androgen-independent prostate cancer by controlling MMP-9 expression through the suppression of the EGFR/JNK pathway. Finally, 5GG suppresses invasion and tumorigenesis in nude mice treatment with intratibia injection of PC-3 cells. These in vitro and in vivo results suggest that 5GG may be a therapeutic candidate for the treatment of advanced prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.