Abstract
In this paper we study asymptotically hyperbolic manifolds given as graphs of asymptotically constant functions over hyperbolic space $\bH^n$. The graphs are considered as subsets of $\bH^{n+1}$ and carry the induced metric. For such manifolds the scalar curvature appears in the divergence of a 1-form involving the integrand for the asymptotically hyperbolic mass. Integrating this divergence we estimate the mass by an integral over an inner boundary. In case the inner boundary satisfies a convexity condition this can in turn be estimated in terms of the area of the inner boundary. The resulting estimates are similar to the conjectured Penrose inequality for asymptotically hyperbolic manifolds. The work presented here is inspired by Lam's article concerning the asymptotically Euclidean case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.