Abstract

In this work we present PENLINAC, a code package developed to facilitate the use of the Monte Carlo code PENELOPE for the simulation of therapeutic beams, including high-energy electrons, photons and 60Co beams. The code simplifies the creation of the treatment machine geometry, allowing the modeling of their components from elementary geometric bodies and their further conversion to the quadric functions-based structure handled by PENELOPE. The code is implemented in various subroutines that allow the user to handle several models of radiation sources and phase spaces. The phase spaces are not part of the geometry and can store many variables of the particle in a relatively small data space. The set of subroutines does not alter the PENELOPE algorithms; thus, the main program implemented by the user can maintain its kind-of-particle-independent structure. A support program can handle and analyze the phase spaces to generate, among others, last interaction maps and probability distributions that can be used as sources in simulation. Results from simulations of a Clinac linear accelerator head are presented in order to demonstrate the package capabilities. Dose distributions calculated in a water phantom for a variety of beams of this accelerator showed good agreement with measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.