Abstract

ABSTRACT Ultraviolet-B (UVB) radiation is a major physical factor that induces structural changes in human skin. The aim of this study was to determine whether the novel silent information regulator 1 (sirtuin 1 SIRT1) protein activator, penilumamide, exerted any protective effects against UVB-induced skin damage using human HaCaT keratinocytes as a model. Enzymatic assays were performed to determine the SIRT1-activating ability of penilumamide, which was compared with that of resveratrol, a potent natural product SIRT1 activator with antioxidant and anti-inflammatory properties. Penilumamide markedly activated SIRT1 enzyme activity compared to resveratrol. To further investigate the protective effect of penilumamide against UVB-induced cytotoxicity, HaCaT cells were pretreated with penilumamide (10 μM) for 24 hr followed by irradiation with UVB (40 mJ/cm2). UVB (40 mJ/cm2) irradiation significantly reduced cell viability in a time-dependent manner, whereas pretreatment with penilumamide blocked this effect. Further, penilumamide decreased the levels of intracellular reactive oxygen species (ROS) generated by UVB irradiation in HaCaT cells. Pretreatment with penilumamide also prevented UVB irradiation-induced changes in mitochondrial membrane potential (ΔΨ m). In addition, pretreatment with penilumamide significantly reduced the expression levels of pro-inflammatory cytokines, interleukin (IL)-6, IL-8, and IL-10 and phosphorylation of nuclear factor-kB (NF-kB). These results indicate that penilumamide protects HaCaT cells from UVB-induced inflammation. Taken together data demonstrate that penilumamide exerted protective effects against UVB-induced ROS generation in HaCaT cells. Therefore, penilumamide may be considered to be used as a new SIRT1 activator to protect human keratinocyte against UVB-induced damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.