Abstract

Most current researches focus solely on reducing soil chromium availability. It is difficult to reduce soil Cr(VI) concentration below 5.0 mg kg-1 using single remediation technology. This study introduced a sustainable soil Cr(VI) reduction and stabilization system, Penicillium oxalicum SL2–nanoscale zero-valent iron (nZVI), and investigated its effect on Cr(VI) reduction efficiency and microbial ecology. Results showed that P. oxalicum SL2–nZVI effectively reduced soil total Cr(VI) concentration from 187.1 to 3.4 mg kg–1 within 180 d, and remained relatively stable at 360 d. The growth curve of P. oxalicum SL2 and microbial community results indicated that γ-ray irradiation shortened the adaptation time of P. oxalicum SL2 and facilitated its colonization in soil. P. oxalicum SL2 colonization activated nZVI and its derivatives, and increased soil iron bioavailability. After restoration, the negative effect of Cr(VI) on soil microorganisms was markedly alleviated. Cr(VI), Fe(II), bioavailable Cr/Fe, Eh, EC and urease (SUE) were the key environmental factors of soil microbiota. Notably, Penicillium significantly stimulated the growth of urease-positive bacteria, Arthrobacter, Pseudarthrobacter, and Microvirga, synergistically reducing soil chromium availability. The combination of P. oxalicum SL2 and nZVI is expected to form a green, economical and long-lasting Cr(VI) reduction stabilization strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.