Abstract

Background Chlamydia trachomatis is a major human pathogen with a unique obligate intracellular developmental cycle that takes place inside a modified cytoplasmic structure known as an inclusion. Following entry into a cell, the infectious elementary body (EB) differentiates into a non - infectious replicative form known as a reticulate body (RB). RBs divide by binary fission and at the end of the cycle they redifferentiate into EBs. Treatment of C.trachomatis with penicillin prevents maturation of RBs which survive and enlarge to become aberrant RBs within the inclusion in a non - infective persistent state. Persistently infected individuals may be a reservoir for chlamydial infection. The C.trachomatis genome encodes the enzymes for peptidoglycan (PG) biosynthesis but a PG sacculus has never been detected. This coupled to the action of penicillin is known as the chlamydial anomaly. We have applied video microscopy and quantitative DNA assays to the chlamydial developmental cycle to assess the effects of penicillin treatment and establish a framework for investigating penicillin induced chlamydial persistence.Principal FindingsAddition of penicillin at the time of cell infection does not prevent uptake and the establishment of an inclusion. EB to RB transition occurs but bacterial cytokinesis is arrested by the second binary fission. RBs continue to enlarge but not divide in the presence of penicillin. The normal developmental cycle can be recovered by the removal of penicillin although the large, aberrant RBs do not revert to the normal smaller size but remain present to the completion of the developmental cycle. Chromosomal and plasmid DNA replication is unaffected by the addition of penicillin but the arrest of bacterial cytokinesis under these conditions results in RBs accumulating multiple copies of the genome.ConclusionsWe have applied video time lapse microscopy to the study of the chlamydial developmental cycle. Linked with accurate measures of genome replication this provides a defined framework to analyse the developmental cycle and to investigate and provide new insights into the effects of antibiotic treatments. Removal of penicillin allows recovery of the normal developmental cycle by 10–20 hrs and the process occurs by budding from aberrant RBs.

Highlights

  • Chlamydia trachomatis is a major human pathogen responsible for ocular and sexually transmitted diseases [1,2]

  • Removal of penicillin allows recovery of the normal developmental cycle by 10–20 hrs and the process occurs by budding from aberrant reticulate body (RB)

  • Once an active infection is established RBs divide by binary fission, within inclusions, before undergoing further differentiation and condensation of their DNA to form new elementary body (EB) that are released from the host cell upon lysis

Read more

Summary

Introduction

Chlamydia trachomatis is a major human pathogen responsible for ocular and sexually transmitted diseases [1,2] It is an obligate intracellular bacterium which grows and divides within a cytoplasmic structure known as an ‘inclusion’ [3,4]. Once an active infection is established RBs divide by binary fission, within inclusions, before undergoing further differentiation and condensation of their DNA to form new EBs that are released from the host cell upon lysis. Chlamydia trachomatis is a major human pathogen with a unique obligate intracellular developmental cycle that takes place inside a modified cytoplasmic structure known as an inclusion. The C.trachomatis genome encodes the enzymes for peptidoglycan (PG) biosynthesis but a PG sacculus has never been detected This coupled to the action of penicillin is known as the chlamydial anomaly. We have applied video microscopy and quantitative DNA assays to the chlamydial developmental cycle to assess the effects of penicillin treatment and establish a framework for investigating penicillin induced chlamydial persistence

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call