Abstract

Penicillin-binding proteins of Streptococcus pneumoniae were labeled with [3H] propionyl-ampicillin and treated with trypsin. The fragments were separated on sodium dodecyl sulfate/polyacrylamide gels, and peptides containing the beta-lactam-binding site visualized by fluorography. From native penicillin-binding proteins (PBP), either membrane-bound or solubilized with Triton X-100, relatively stable end products of proteolysis were obtained. The smallest radioactive peptides from PBP 1a (92 kDa), PBP 2b (77 kDa), and PBP 3 (43 kDa ) had sizes of 36.5 kDa, 26 kDa, and 29 kDa, respectively. When the PBP were trypsin treated prior to labeling with the radioactive beta-lactam, these small peptides were still able to bind the antibiotic. Under conditions of limited proteolysis, membrane-bound PBP 2b and PBP 3 were converted into soluble, hydrophilic derivatives after loss of a peptide of only 2 kDa and 1.5 kDa, respectively. These two PBP are therefore anchored in the membrane by a small terminal peptide. In contrast, PBP 1a could be digested to a Mr of 48000 without becoming water-soluble; the only hydrophilic tryptic peptide that could be found was the 36.5 kDa fragment. Therefore, large domains of this PBP seem to be embedded in the membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.