Abstract

Postsurgical treatment of glioblastoma multiforme (GBM) by systemic chemotherapy and radiotherapy is often inefficient. Tumor cells infiltrating deeply into the brain parenchyma are significant obstacles to the eradication of GBM. Here, we present a potential solution to this challenge by introducing an injectable thermoresponsive hydrogel nanocomposite. As a liquid solution that contains drug-loaded micelles and water-dispersible ferrimagnetic iron oxide nanocubes (wFIONs), the hydrogel nanocomposite is injected into the resected tumor site after surgery. It promptly gelates at body temperature to serve as a soft, deep intracortical drug reservoir. The drug-loaded micelles target residual GBM cells and deliver drugs with a minimum premature release. Alternating magnetic fields accelerate diffusion through heat generation from wFIONs, enabling penetrative drug delivery. Significantly suppressed tumor growth and improved survival rates are demonstrated in an orthotopic mouse GBM model. Our system proves the potential of the hydrogel nanocomposite platform for postsurgical GBM treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.