Abstract
With the development and strengthening of interception measures, the traditional penetration methods of high-speed unmanned aerial vehicles (UAVs) are no longer able to meet the penetration requirements in diversified and complex combat scenarios. Due to the advancement of Artificial Intelligence technology in recent years, intelligent penetration methods have gradually become promising solutions. In this paper, a penetration strategy for high-speed UAVs based on improved Deep Reinforcement Learning (DRL) is proposed, in which Long Short-Term Memory (LSTM) networks are incorporated into a classical Soft Actor–Critic (SAC) algorithm. A three-dimensional (3D) planar engagement scenario of a high-speed UAV facing two interceptors with strong maneuverability is constructed. According to the proposed LSTM-SAC approach, the reward function is designed based on the criteria for successful penetration, taking into account energy and flight range constraints. Then, an intelligent penetration strategy is obtained by extensive training, which utilizes the motion states of both sides to make decisions and generate the penetration overload commands for the high-speed UAV. The simulation results show that compared with the classical SAC algorithm, the proposed algorithm has a training efficiency improvement of 75.56% training episode reduction. Meanwhile, the LSTM-SAC approach achieves a successful penetration rate of more than 90% in hypothetical complex scenarios, with a 40% average increase compared with the conventional programmed penetration methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.