Abstract
AbstractThe penetration of salt solution into graphene oxide/epoxy resin (GO/EP) will cause structural damage, decrease in mechanical properties, and reduce service life. In this study, molecular dynamics method was used to simulate the penetration of the 3.5% NaCl solution through the GO/EP. In order to understand the effect of GO surface functional groups on the barrier properties of the GO/EP, a pure graphene model and three kinds of GO models modified with oxygen‐containing functional groups (ether, hydroxyl, and carboxyl) were established, respectively. The penetration resistance of GO/EP was analyzed. The type of oxygen‐containing functional group affects the penetration rate of the salt solution and the GO/EP interface performance. The spatial distribution and kinetic behavior of the salt solution were studied. The results show that the salt solution molecules trapped in GO/EP were mainly concentrated at the interface between GO and EP, which is the main reason for the degradation of the GO/EP interface performance. Affected by GO, the penetration process of ions can be divided into multiple stages, and its motion state was different depending on the type of functional group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.