Abstract

Chemical processes on the surface of icy grains play an important role in the chemical evolution in molecular clouds. In particular, reactions involving nonenergetic hydrogen atoms accreted from the gaseous phase have been extensively studied. These reactions are believed to effectively proceed only on the surface of the icy grains; thus, molecules embedded in the ice mantle are not considered to react with hydrogen atoms. Recently, Tsuge et al. suggested that nonenergetic hydrogen atoms can react with CO molecules even in ice mantles via diffusive hydrogenation. This investigation was extended to benzene and naphthalene molecules embedded in amorphous solid water (ASW) in the present study, which revealed that a portion of these molecules could be fully hydrogenated in astrophysical environments. The penetration depths of nonenergetic hydrogen atoms into porous and nonporous ASW were determined using benzene molecules to be >50 and ∼10 monolayers, respectively (1 monolayer ≈ 0.3 nm).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call