Abstract

In this paper, we document the results of a combined experimental, analytical, and computational research program that investigates the penetration of steel projectiles into limestone targets at oblique angles. We first conducted a series of depth-of-penetration experiments using 20.0 g, 7.11-mm-diameter, 71.12-mm-long, vacuum-arc-remelted (VAR) 4340 ogive-nose steel projectiles. These projectiles were launched with striking velocities between 0.4 and 1.3 km/s using a 20-mm powder gun into 0.5 m square limestone target faces with angles of obliquity of 15° and 30°. Next, we employed the initial conditions obtained from the experiments with a technique that we have developed to calculate permanent projectile deformation without erosion. With this technique we use an explicit, transient dynamic, finite element code to model the projectile and an analytical forcing function based on the dynamic expansion of a spherical cavity to represent the target. Due to angle of obliquity we developed a new free surface effect model based on the solution of a dynamically expanding spherical cavity in a finite sphere of incompressible Mohr–Coulomb target material to account for the difference in target resistance acting on the top and bottom sides of the projectile. Results from the simulations show the final projectile positions are in good agreement with the positions obtained from post-test castings of the projectile trajectories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call