Abstract

We conducted depth of penetration experiments into grout and concrete targets with ogive-nose steel projectiles. Powder guns launched 0.064 kg, 12.9 mm diameter projectiles into grout targets with unconfined compressive strengths of 13.5 M Pa (2.0 ksi) and 21.6 MPa (3.1 ksi). For the concrete targets, powder guns launched projectiles with length-to-diameter ratios of 10; a 0.48 kg, 20.3 mm diameter rod, and a 1.60 kg, 30.5 mm diameter rod. Concrete targets had unconfined compressive strength of 62.8 M Pa (9.1 ksi) for the 0.48 kg rods and unconfined compressive strength of 51.0 MPa (7.4 ksi) for the 1.60 kg rods. For these experiments, penetration depth increased as striking velocity increased until nose erosion became excessive. Thus, we determined experimentally the striking velocities corresponding to maximum penetration depths. Predictions from a previously published model are in good agreement with data until nose erosion becomes excessive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call