Abstract

The absorption of foliar fertilizer is a complex process and is poorly understood. The ability to visualize and quantify the pathway that elements take following their application to leaf surfaces is critical for understanding the science and for practical applications of foliar fertilizers. By the use of synchrotron-based X-ray fluorescence to analyze the in vivo localization of elements, our study aimed to investigate the penetration of foliar-applied Zn absorbed by apple (Malus domestica Borkh.) leaves with different physiological surface properties, as well as the possible interactions between foliar Zn level and the mineral nutrient status of treated leaves. The results indicate that the absorption of foliar-applied Zn was largely dependent on plant leaf surface characteristics. High-resolution elemental maps revealed that the high binding capacity of the cell wall for Zn contributed to the observed limitation of Zn penetration across epidermal cells. Trichome density and stomatal aperture had opposite effects on Zn fertilizer penetration: a relatively high density of trichomes increased the hydrophobicity of leaves, whereas the presence of stomata facilitated foliar Zn penetration. Low levels of Zn promoted the accumulation of other mineral elements in treated leaves, and the complexation of Zn with phytic acid potentially occurred owing to exposure to high-Zn conditions. The present study provides direct visual evidence for the Zn penetration process across the leaf surface, which is important for the development of strategies for Zn biofortification in crop species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.