Abstract

We investigate the interaction between a test monochromatic wave and semibounded plasma formed by multiphoton ionization of gas atoms. Under conditions where photoelectron distribution is isotropic and has a narrow peak in energy, the field in the plasma is represented by two contributions. The first of them arises from a pole in the complex plane of wave numbers and decays exponentially deeper into plasma. The second contribution comes from banks of the cut in the same plane and leads to a power-law decrease of the field under conditions of the anomalous skin effect. We obtain analytical expressions for the field under conditions of high-frequency and anomalous skin effects and find the surface impedance and absorption coefficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call