Abstract
It is well known that diesel fumes are carcinogenic to humans and may cause inflammation of the respiratory tract, cardiovascular problems, etc. Diesel exhaust particles (DEPs) occurring in diesel fumes are fractal-like aggregates with diameters ranging between 10 and 2000 n m, with various compounds adsorbed on their surface. The fractal-like structure of DEPs and their nanosize leads to the problem of theoretically predicting the DEPs’ filtration efficiency. Thus, experimental studies on effective protection against DEPs as well as theoretical modeling are essential. This study analyzes both experimentally and theoretically the mechanical and electret filters and their potential effectiveness in the filtration of DEPs. The theoretical analysis of the filtration process on fibrous fabrics was performed using classic filtration theory, assuming that the filtration layer can be treated as a system of a single fiber located in the Kuwabara cell. The experimental results show that the fibrous filters, produced using melt-blown technology, provide a high level of protection against DEP aerosols (93 % –99 % ). The obtained filtration efficiencies are (in some cases) even higher than requested for particulate respiratory half-mask type 2 (made from a fibrous filter). However, the theoretical results obtained using classic filtration theory indicate lower filtration efficiencies than the experimental ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.