Abstract

We present a numerical study on the penetration of spherical projectiles into a granular bed in the presence of upward gas flows. Due to the presence of interstitial fluid, the force chains between particles in the granular bed are weakened significantly, and this distinguishes the penetration behavior from that in the absence of fluid. An interesting phenomenon, namely granular jet, is observed during the penetration, and the mechanism for its formation and growth is attributed to the merging of granular vortices generated by the interaction between the intruder and primary particles. Moreover, both the final penetration depth and the maximum diameter of the crater are found to follow a power-law dependence with the impact velocity, and the maximum height reached by the granular jet tends to increase linearly as the impact velocity increases, agreeing well with the experimental results reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.