Abstract

In order to adapt to the launch velocity of modern artillery, it is necessary to study the fracture mechanism of the high-velocity penetration of penetrators. Therefore, the penetration fracture mode of tungsten-fiber-reinforced Zr-based bulk metallic glass matrix composite (WF/Zr-MG) rods at a high velocity is studied. An experiment on WF/Zr-MG rods penetrating into rolled homogeneous armor steel (RHA) was carried out at 1470~1650 m/s. The experimental results show that the higher penetration ability of WF/Zr-MG rods not only results from their "self-sharpening" feature, but also due to the fact they have a longer quasi-steady penetration phase than tungsten alloy (WHA) rods. Above 1500 m/s, the penetration fracture mode of the WF/Zr-MG rod is the bending and backflow of tungsten fibers. Our theoretical calculation shows that the deformation mode of the Zr-based bulk metallic glass matrix (Zr-MG) is an important factor affecting the penetration fracture mode of the WF/Zr-MG rod. When the impact velocity increases from 1000 m/s to 1500 m/s, the deformation mode of Zr-MG changes from shear localization to non-Newtonian flow, leading to a change in the penetration fracture mode of the WF/Zr-MG rod from shear fracture to the bending and backflow of tungsten fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.