Abstract

The axial penetration of an azimuthal magnetic field into a short-duration hollow cylindrical plasma is studied. When the process is so fast that the ion motion is small and the plasma dissipative resistivity, electron inertia, and pressure are small, the evolution of the magnetic field is governed by the Hall field. When the radial current flows inward, the magnetic field penetrates in the form of a Hall-induced shock wave with a narrow current channel. When outward, the magnetic field does not penetrate the plasma. Moreover, in the latter case the magnetic field is expelled from an initially magnetized plasma. The increase and decrease of the magnetic field intensity in the cylindrical plasma are shown to result naturally from the frozen-in law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.