Abstract

Sand is known to oppose an increasing resistance to penetration with depth. This is different from what happens in liquids since granular media, usually nonthermal systems, oppose solid friction to the motion. We report another striking and "counterintuitive" difference between the penetration dynamics observed in sand and in liquids. When pushing a top-closed shell (e.g., an upside down glass) into a liquid, the trapped air increases the buoyancy and opposes the penetration. It is more difficult to push a top capped cylinder than an opened one vertically into liquids. In contrast, the penetration is considerably easier in dense sand when cylinders are top capped. In this discrete and biphasic medium, the trapped air escapes from the shell, fluidizes the sand, and eases the motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.