Abstract

Aluminum alloy foam offers a unique combination of good characteristics, for example, low density, high strength and energy absorption. During penetration, the foam materials exhibit significant nonlinear deformation. The penetration of aluminum alloy foam struck transversely by cone-nosed projectiles has been theoretically investigated. The dynamic cavity-expansion model is used to study the penetration resistance of the projectiles, which can be taken as two parts. One is due to the elasto-plastic deformation of the aluminum alloy foam materials. The other is dynamic resistance force coming from the energy of the projectiles. The penetration resistance expression is derived and applied to analyze the penetration depth of cone-nosed projectiles into the aluminum alloy foam target. The effect of initial velocity, the geometry of the projectiles on the penetration depth is investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.