Abstract
Heteroscedasticity poses a challenge in ARIMA modeling by causing residual variance to be non-constant, leading to less efficient estimates. This issue often arises in time series data due to volatility, which measures data fluctuation over time. To address heteroscedasticity, models like ARCH and GARCH incorporate variance changes into forecasting. However, they lack the ability to capture asymmetry, the difference in impact between good and bad news on volatility. The APARCH model, on the other hand, addresses this by modeling volatility with asymmetry elements. Daily world crude oil prices, known for high volatility, serve as a case study for this research. By employing the APARCH model, the study aims to forecast these prices accurately. Results indicate that the APARCH(1,1) model outperforms the best GARCH model, ARCH(2), as it yields a smaller Mean Absolute Percentage Error (MAPE) of 6.033487. This highlights the superior accuracy of APARCH in forecasting data with heteroscedasticity issues, particularly in the context of daily crude oil prices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.