Abstract

This paper presents the results of the analytical and experimental studies of a pendulum tuned mass damper (PTMD) to control excessive floor vibrations due to human movements. The PTMD used in this study acts as a passive tuned mass damper. An equivalent single-degree-of-freedom model for the PTMD is developed and used to derive the equations of motion of the coupled PTMD-floor system. The optimal design parameters of the PTMD are found using an optimization algorithm. Effects of off-tuning of the PTMD due to the variations in the floor mass on its response are investigated. Results of the tuning of the PTMD on a laboratory test floor are presented along with the off-tuning effects. These results indicate that a properly tuned PTMD can significantly reduce the excessive floor vibrations. In addition, when subjected to off-tuning due to variations in the floor live load the PTMD may or may not be able to perform effectively depending on the level of human-structure dynamic interactions. Finally, examples o...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.