Abstract

Because brachiating locomotion is characterized by a pattern of swinging movements, brachiation has often been analogized to pendular motion, and aspects of the mechanics of pendular systems have been used to provide insight into both energetic and structural design aspects of this locomotor mode. However, there are several limitations to this approach. First, the motions of brachiating animals only approximate pendular motion, and therefore the energetics of these two systems are only roughly comparable. Second, the kinematic similarity between brachiation and pendular motion will be maximal at only one velocity, and the correspondence will be even less at greater or lesser speeds. Third, all forms of terrestrial locomotion that involve the use of limbs incorporate elements of pendular systems, and therefore brachiation is not unusual in this respect. Finally, it has been suggested that the mechanics of pendular motion will constrain the maximum attainable body size of brachiating animals and that this mechanical situation explains the lack of brachiating primates of greater than 30-kg body size; the present analysis provides evidence that the constraints on body size are far less strict than previously indicated and that extrinsic factors such as the geometry of the forest environment are more likely to dictate maximum body size for brachiators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.