Abstract

In silico studies on interactions between the human pancreatic α-amylase (HPA) enzyme with α, β, and γ-mangostin ligands has been carried out using the molecular docking method. Ligands α, β, and γ-mangostin interact through the formation of hydrogen and van der waals bonds with residues on the enzyme active side. The α-mangostin ligands form seven hydrogen and six van der waals bonds with residues involved were Trp59, Gln63, Trp96, Thr163, Thr164, Ala198, His201, Glu233, and Asp300; β-mangostin forms five hydrogen and eight van der waals bonds with residues involved were Gln63, Trp96, Thr163, Thr164, Arg195, Asp197, His201, Glu233, Asp300, and His305; while γ-mangostin forms nine hydrogen and five van der waals bonds with residues involved were Trp59, Gln63, Trp96, Thr163, Asp197, Ala198, His201, Glu233, and Asp300. The binding afinity of α, β, and γ-mangostin to the HPA obtained were -7.0; -6.6; and -7.4 kcal/mol with RMSD value were 1,850; 1,956; and 1,811 Å, respectively. The number of hydrogen bonds that can be formed was responsible to the binding affinity. Ligand γ-mangostin has potential activity as an inhibitor of HPA enzyme due to the stable complexes formation with lower binding affinity (validated with RMSD value) when compared to α and β-mangostin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.