Abstract

This article analyzes the effect of the penalty parameter used in symmetric dual-wind discontinuous Galerkin (DWDG) methods for approximating second order elliptic partial differential equations (PDE). DWDG methods follow from the DG differential calculus framework that defines discrete differential operators used to replace the continuous differential operators when discretizing a PDE. We establish the convergence of the DWDG approximation to a continuous Galerkin approximation as the penalty parameter tends towards infinity. We also test the influence of the regularity of the solution for elliptic second-order PDEs with regards to the relationship between the penalty parameter and the error for the DWDG approximation. Numerical experiments are provided to validate the theoretical results and to investigate the relationship between the penalty parameter and the L^2-error. For more information see https://ejde.math.txstate.edu/conf-proc/26/l1/abstr.html

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.