Abstract
Taking into account default risk in the valuation of financial derivatives has become increasingly important, especially after the 2007-2008 financial crisis. Under some assumptions, the valuation of financial derivatives, including a value adjustment to account for default risk (the so-called XVA), gives rise to a nonlinear PDE. We propose numerical methods for handling the nonlinearity in this PDE, the most efficient of which are discrete penalty iteration methods. We first formulate a penalty iteration method for the case of European contingent claims, and study its convergence. We then extend the method to the case of American contingent claims, resulting in a double-penalty iteration. We also propose boundary conditions and their discretization for the XVA PDE problem in the cases of call and put options, as well as the case of a forward contract. Numerical results demonstrate the effectiveness of our methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.