Abstract

Reliability optimization has been studied in the literature for decades, usually using a mathematical programming approach. Because of these solution methodologies, restrictions on the type of allowable design have been made, however heuristic optimization approaches are free of such binding restrictions. One difficulty in applying heuristic approaches to reliability design is the highly constrained nature of the problems, both in terms of number of constraints and the difficulty of satisfying constraints. This paper presents a penalty guided genetic algorithm which efficiently and effectively searches over promising feasible and infeasible regions to identify a final, feasible optimal, or near optimal, solution. The penalty function is adaptive and responds to the search history. Results obtained on 33 test problems from the literature dominate previous solution techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.