Abstract
We consider the questions of correction of improper convex programs, first of all, problems with inconsistent systems of constraints. Such problems often arise in the practice of mathematical simulation of specific applied settings in operations research. Since improper problems are rather frequent, it is important to develop methods of their correction, i.e., methods of construction of solvable models that are close to the original problems in a certain sense. Solutions of these models are taken as generalized (approximation) solutions of the original problems. We construct the correcting problems using a variation of the right-hand sides of the constraints with respect to the minimum of a certain penalty function, which, in particular, can be taken as some norm of the vector of constraints. As a result, we obtain optimal correction methods that are modifications of the (Tikhonov) regularized method of penalty functions. Special attention is paid to the application of the exact penalty method. Convergence conditions are formulated for the proposed methods and convergence rates are established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.