Abstract

Age-period-cohort (APC) models are frequently used in a variety of health and demographic-related outcomes. Fitting and interpreting APC models to data in equal intervals (equal age and period widths) is nontrivial due to the structural link between the three temporal effects (given two, the third can always be found) causing the well-known identification problem. The usual method for resolving the structural link identification problem is to base a model on identifiable quantities. It is common to find health and demographic data in unequal intervals, this creates further identification problems on top of the structural link. We highlight the new issues by showing that curvatures which were identifiable for equal intervals are no longer identifiable for unequal data. Furthermore, through extensive simulation studies, we show how previous methods for unequal APC models are not always appropriate due to their sensitivity to the choice of functions used to approximate the true temporal functions. We propose a new method for modeling unequal APC data using penalized smoothing splines. Our proposal effectively resolves the curvature identification issue that arises and is robust to the choice of the approximating function. To demonstrate the effectiveness of our proposal, we conclude with an application to UK all-cause mortality data from the Human mortality database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.