Abstract

Penalized regression methods are becoming increasingly popular in genomewide association studies (GWAS) for identifying genetic markers associated with disease. However, standard penalized methods such as the LASSO do not take into account the possible linkage disequilibrium between adjacent markers. We propose a novel penalized approach for GWAS using a dense set of single nucleotide polymorphisms (SNPs). The proposed method uses the minimax concave penalty (MCP) for marker selection and incorporates linkage disequilibrium (LD) information by penalizing the difference of the genetic effects at adjacent SNPs with high correlation. A coordinate descent algorithm is derived to implement the proposed method. This algorithm is efficient and stable in dealing with a large number of SNPs. A multi-split method is used to calculate the p-values of the selected SNPs for assessing their significance. We refer to the proposed penalty function as the smoothed minimax concave penalty (SMCP) and the proposed approach as the SMCP method. Performance of the proposed SMCP method and its comparison with a LASSO approach are evaluated through simulation studies, which demonstrate that the proposed method is more accurate in selecting associated SNPs. Its applicability to real data is illustrated using data from a GWAS on rheumatoid arthritis. Based on the idea of SMCP, we propose a new penalized method for group variable selection in GWAS with respect to the correlation between adjacent groups. The proposed method uses the group LASSO for encouraging group sparsity and a

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.