Abstract

We provide a simple and practical, yet flexible, penalized estimation method for a Cox proportional hazards model with current status data. We approximate the baseline cumulative hazard function by monotone B-splines and use a hybrid approach based on the Fisher-scoring algorithm and the isotonic regression to compute the penalized estimates. We show that the penalized estimator of the nonparametric component achieves the optimal rate of convergence under some smooth conditions and that the estimators of the regression parameters are asymptotically normal and efficient. Moreover, a simple variance estimation method is considered for inference on the regression parameters. We perform 2 extensive Monte Carlo studies to evaluate the finite-sample performance of the penalized approach and compare it with the 3 competing R packages: C1.coxph, intcox, and ICsurv. A goodness-of-fit test and model diagnostics are also discussed. The methodology is illustrated with 2 real applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.