Abstract

High-dimensional sparse modeling with censored survival data is of great practical importance, as exemplified by applications in high-throughput genomic data analysis. In this paper, we propose a class of regularization methods, integrating both the penalized empirical likelihood and pseudoscore approaches, for variable selection and estimation in sparse and high-dimensional additive hazards regression models. When the number of covariates grows with the sample size, we establish asymptotic properties of the resulting estimator and the oracle property of the proposed method. It is shown that the proposed estimator is more efficient than that obtained from the non-concave penalized likelihood approach in the literature. Based on a penalized empirical likelihood ratio statistic, we further develop a nonparametric likelihood approach for testing the linear hypothesis of regression coefficients and constructing confidence regions consequently. Simulation studies are carried out to evaluate the performance of the proposed methodology and also two real data sets are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.