Abstract

We propose extensions of penalized spline generalized additive models for analysing space-time regression data and study them from a Bayesian perspective. Non-linear effects of continuous covariates and time trends are modelled through Bayesian versions of penalized splines, while correlated spatial effects follow a Markov random field prior. This allows to treat all functions and effects within a unified general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference can be performed either with full (FB) or empirical Bayes (EB) posterior analysis. FB inference using MCMC techniques is a slight extension of own previous work. For EB inference, a computationally efficient solution is developed on the basis of a generalized linear mixed model representation. The second approach can be viewed as posterior mode estimation and is closely related to penalized likelihood estimation in a frequentist setting. Variance components, corresponding to smoothing parameters, are then estimated by using marginal likelihood. We carefully compare both inferential procedures in simulation studies and illustrate them through real data applications. The methodology is available in the open domain statistical package BayesX and as an S-plus/R function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.