Abstract
In the present paper we propose a new method, the Penalized Adaptive Method (PAM), for a data driven detection of structure changes in sparse linear models. The method is able to allocate the longest homogeneous intervals over the data sample and simultaneously choose the most proper variables with help of penalized regression models. The method is simple yet exible and can be safely applied in high-dimensional cases with di erent sources of parameter changes. Comparing with the adaptive method in linear models, its combination with dimension reduction yields a method which selects proper signi cant variables and detects structure breaks while steadily reduces the forecast error in high-dimensional data. When applying PAM to bond risk premia modelling, the locally selected variables and their estimated coecient loadings identi ed in the longest stable subsamples over time align with the true structure changes observed throughout the market.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.