Abstract

Unemployment is one of the employment problems facing Indonesia. Central Java Province is one of the provinces with a high enough unemployment. The main indicators used to measure the unemployment rate in the labor force that is unemployed. Based on research Arianie (2012) labor force participation rate significantly affect the unemployment rate and based on research Sari (2012) the gross enrollment ratio significantly affects the rate of open unemployment. Therefore, in this study using the two predictor variables with the labor force participation rate as X 1 and gross enrollment rate as X 2 . This study aimed to explore the model of open unemployment rate in the Province of Central Java. The method used is the method of spline regression. Spline regression has the ability to adapt more effectively to the data patterns up or down dramatically with the help of dots knots. Determination of the optimal point knots are very influential in determining the best spline models. The best spline models are models that have a minimum GCV (Generalized Cross Validation) Value. Best spline models for the analysis of the data rate of unemployment in Central Java Province is the spline regression model when order X 1 is 2 and order X 2 is 4 and large number of knots in the X 1 is 1 knot at the point 68.02394 and X 2 is 3 knots at the point 82.13, 87.19, and 87.65 with GCV value of 1.732746. Keywords: Rate of Open Unemployment, Spline Regression, GCV

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.